My Math Academy ${ }^{\text {w" }}$ Significantly Accelerates Early Mathematics Learning -KP Thai, Ph.D., ${ }^{+}$Linlin Li, Ph.D.,+ Abby Schachner, Ph.D. ${ }^{+t+}$

Key Findings

- With five hours of total usage over a 12-14 week period, My Math Academy accelerated pre-k and kindergarten math learning gains by 36%.
- Teachers found that students enjoyed using My Math Academy and that it had a meaningful impact on their interest and self-confidence in learning math.
- The more students used My Math Academy, the greater their learning gains.
- The greatest impacts were found on the most difficult math skills.
- Teachers recognized the value of My Math Academy for personalizing learning and advocated for continued use.

Overview

With only 40% of students proficient in math by 4th grade, the U.S. faces an acute need to scale innovative approaches to help close the math achievement gap. Closing this gap is particularly critical in order to support effective Science, Technology, Engineering, and Mathematics (STEM) learning and prepare the future workforce for twenty-first-century careers. Yet there remain few evidence-based and engaging digital learning resources to accelerate early math learning. To address
this need, a cluster randomized controlled study was conducted to evaluate the impact of Age of Learning's My Math Academy, a digital math program for young learners. For this study, Age of Learning, Inc., partnered with WestEd, a nonprofit research, development, and service agency with deep expertise in evaluating the impact of educational programs. Age of Learning staff who were blind to the treatment or control conditions and were not involved in any other research activities for the study collected the data. The researchers in WestEd's STEM Program analyzed and worked with Age of Learning to interpret the data. ${ }^{\text {tht }}$

My Math Academy is an adaptive game-based curriculum designed to help children build a strong understanding of fundamental number sense concepts and operations, from recognizing numbers and basic counting up through adding and subtracting three-digit numbers. With engaging characters and scenarios, individualized learning pathways, and continuous assessment built into every level of every game, My Math Academy is designed to accelerate children's achievement of mastery. Starting with a research-based knowledge map of learning objectives and their prerequisite relationships and based on each student's performance, the adaptive system decides what games to recommend at which difficulty level and uses variable scaffolding personalized for each learner.

At the time of this study, My Math Academy contained 29 games addressing granular skills within number recognition, forward and backward counting, and

[^0]
VI Age of Learning

Figure 1. Sample pretest
counting from 1 to 20. Each game includes up to six learning activities at various difficulty levels, including a pretest and an in-game mastery check called the "boss" level. Figure 1 is a screenshot of the pretest for a game addressing the learning objective "count out, with numbers 1 to 5 ," and Figure 2 is a screenshot of the boss level of the game, in which children are asked to drag the target number of "Shapeys"" (the characters in the game) onto the boat.

Students can acquire mastery by failing a pretest and passing the corresponding boss level. Students can demonstrate mastery by passing the pretest, passing the boss level, or getting placed out of a skill by passing a more advanced skill. Students can complete the game if they demonstrate mastery of all skills in the app, at which point they receive practice boss levels on highlevel skills. My Math Academy is available as an app for smartphones and tablets and in both English and Spanish, but all treatment students in this study used the Englishlanguage version.

Participants

A total of 453 students (51% female, 76% Hispanic, 22\% African American) participated in the study. They came from 20 kindergarten (K) and transitional-kindergarten (TK ${ }^{2}$) classrooms at four Title I elementary schools in urban Southern California. Prior to the start of the study, TK and

Figure 2. Sample activity

K classrooms within each school were randomly assigned into the treatment or control groups. The treatment group consisted of ten K classes, and the control group of eight K and two TK classes. Each school housed four to six participating classrooms. One of the control classrooms was designated as a bilingual classroom.

At the start of the study, the students' mean age was 5.44 ($S D=.36$, ranged 4.81 to 6.65). Age distributions were similar between the two groups. The treatment group ($M=5.50$, $S D=.32$) was slightly older than the control group ($M=5.37, S D=.39$) but the difference was not statistically significant, accounting for clustering effects (students were nested within classrooms, $p=.11$). Assessments were administered in the child's preferred language, with 5.3% of students at pretest and 3.5% at posttest tested in Spanish or both English and Spanish.

Students who did not take both the pretest and posttest were excluded from the analytic sample for the outcome measure. ${ }^{3}$ The final analytic sample contained 428 students with complete pre- and posttest data. There were no statistically significant group differences in attrition, age, gender, or pretest language.

Design and Procedure

This study had a multi-site cluster random assignment design and took place over approximately 15 weeks in the fall of 2017. Treatment classrooms received full access

[^1]
DI Age of Learning

to the My Math Academy app in fall 2017 and were asked to implement the app in small groups for 15 minutes per day, three days per week, for the fall semester. Control classrooms did not receive My Math Academy access and conducted business-as-usual instruction. For the implementation period, each treatment classroom received six tablets with access restricted to My Math Academy. Control classrooms did not have tablet access.

Prior to implementation, treatment teachers received a one-hour training on how to operate the tablets and My Math Academy. Treatment teachers received weekly email reminders of usage and summary of student usage during the week. Usage data was gathered from the My Math Academy app.

The primary measure of children's mathematics knowledge was the Test of Early Mathematics Ability, Third Edition (TEMA-3), a standardized and nationally norm-referenced measure of mathematics performance of children from age 3 to 8 years, 11 months. ${ }^{4}$

For this study, a team of math specialists selected 19 out of 72 items from TEMA-3 Form A in order to accommodate the timing alloted by the schools for assessments and to limit the effects of participant fatigue. The selected items addressed the domains of numeral literacy, calculation skills, mastery of number facts, number-comparison facility, and understanding of math concepts. The specialists ensured that the selected items were not overaligned with the intervention; none of the TEMA-3 items were identical to the activities in My Math Academy, and some TEMA-3 items required students to extend their knowledge beyond My Math Academy (e.g., concretely modeling word problems and mental addition).

Trained child assessors administered the assessment one-on-one to students as pre- and posttests. The pretest was administered in early September prior to the implementation period; the posttest in late November and early December (12-14 weeks after the pretest) following
the implementation period. Assessors were blind to students' condition assignment at both assessment timepoints.

Following the posttest, all teachers completed a survey on their math curriculum coverage during the study period and on the impact of My Math Academy (or educational technology, for the control group) on students' early math learning. Eight of ten control teachers reported having used educational technology (via the computer lab) for math instruction during the implementation period. Of the eight, six reported using My Math ${ }^{5}$ (three of them in conjunction with another program, i.e., My Math, Starfall, ${ }^{6}$ and something else), and two reported using ST Math.'

Treatment students spent 5.22 hours on average ($S D=2.97$ hours)-between 28 and 35 minutes per week-on My Math Academy, completing 79 learning activities on average ($S D=40.93$). They acquired mastery of 2.21 skills ($S D=5.10$) and received instruction (the teaching level following a failed pretest) on an average of 11.5 skills ($S D=6.12$). Forty-five students (20%) completed the entire game, demonstrating mastery on all 29 skills (by pretest or by passing the mastery level).

Results

Using rigorous methods, results reveal that My Math Academy significantly accelerated learning gains after an average of 5.2 hours of usage total over the course of 12-14 weeks. To control for students' performance at pretest, we used a three-level hierarchical linear model (HLM) to account for differences by students based on their pretest score, group assignment, and school. ${ }^{8}$ This enabled us to compare the treatment group's posttest outcomes against the control group after adjusting for differences in baseline scores.

[^2]
Vl Age of Learning

Finding 1. My Math Academy significantly accelerated math learning gains.
My Math Academy produced significantly higher gains in children's mathematics knowledge and skills than business-as-usual instruction. The treatment group outperformed the control group by 5.71 percentage points at posttest, and this difference was statistically significant after controlling for differences in pretest, with a large effect size ($p=.03$; effect size $=0.23$, see Table 1). Figure 3 displays the pretest and posttest percent correct by experimental condition. ${ }^{\circ}$ Overall, the treatment group had 36% greater gains in math knowledge than the control group.

Table 1. Impact Analysis of Student Outcome Measures

	Adjusted Mean (SD)		Adjusted Mean Difference ${ }^{\text {b }}$	P-Value	Effect Size
	Treatment ${ }^{\text {a }}$	Control ${ }^{\text {a }}$			
Pretest \% Correct	43.56 (25.21)	40.07 (24.80)	3.49	0.33	$0.14{ }^{\text {c }}$
Posttest \% Correct	62.15 (24.61)	56.44 (25.06)	5.71	0.03	$0.23{ }^{\text {d }}$

[^3]

Figure 3. Percent gain in TEMA-3 math scores by treatment group students who used My Math Academy $(n=233)$ and control group students who did not ($n=195, p<.05$, effect size $=0.23$).

[^4]
VI Age of Learning

Figure 4 shows learning gains by pretest score. My Math Academy produced the greatest learning gains in students who scored in the middle third at pretest ($n=150$, point of estimate $=7.28, p=.04$, effect size $=0.46$). Students who scored in the top third at pretest also showed statistically significantly greater gains than similarly scoring peers from the control group ($n=149$, point of estimate $=5.87, p=.01$, effect size $=0.37$).

Figure 4. Percent gain in TEMA-3 math scores based on prior knowledge for treatment and control group students based on the approximate top, middle, and bottom thirds at pretest ($p<.04$, effect size $=0.46$). Cutoffs were as follows: top third TEMA-3 score > 50\% correct (control $n=67$, treatment $n=82$); middle third $\leq 50 \%$ correct and $>23 \%$ correct (control $n=70$, treatment $n=80$); bottom third $\leq 23 \%$ correct (control $n=58$, treatment $n=71$).

Finding 2. The more students used My Math Academy, the greater their learning gains.
Treatment group students on average started 11.5 games ($S D=6.12$) and completed 2.21 games ($S D=5.10$) by passing the boss level. The more games students started, the greater their learning gains, $r=.19, p<.01$. For children who successfully completed at least one boss level, there was a significant correlation between the number of games mastered and learning gains, $r=.38, p<.01$.

Finding 3. The greatest impacts from My Math Academy were found on the most difficult skills.
Among the skills addressed by the TEMA-3, My Math Academy produced the greatest gains on the most difficult skills (see Figure 5). Research suggests that kindergarten teachers spend most of their time on the basic math skills of simple counting and shape recognition, even though the majority of children enter kindergarten having already mastered these skills and would benefit from being exposed to more advanced content. ${ }^{14}$

On numbers greater than 10, while there were no significant differences between treatment and control groups at pretest, at posttest, 36% of treatment versus 26% of control were able to name the number after $\left(10-20, X^{2}[3, N=428]=10.65\right.$, $p=.05)$, and 53% of treatment versus 42% of control were able to read teen numerals ($X^{2}[3, N=428]=11.96, p=.03$).

[^5]
Vl Age of Learning

On verbally counting backward, while there were no significant differences between treatment and control groups at pretest, at posttest 57% of treatment versus 42% of control were able to count backward from 10 correctly $\left(X^{2}[3, N=428]=13.64, p=.05\right)$, and 21% of treatment versus 8% of control were able to count backward from 20 correctly ($\left.X^{2}[3, N=428]=15.64, p=.02\right)$.

Figure 5. Percent correct on the most difficult TEMA-3 items at posttest for treatment and control groups (n 's for students that correctly answered each item varied between 48-132 for treatment and 16-81 for control, p's $\leq .05$).

Finding 4. Teachers recognized the value of My Math Academy for personalizing learning and advocated for continued use.
Among the treatment group teachers

- One hundred percent reported a positive or highly positive experience using My Math Academy in their classroom. One hundred percent reported meaningful (medium or high) impact on counting skills and identifying numbers.
- One hundred percent of teachers reported meaningful impact on their students' interest in learning math and self-confidence in learning math.
- One hundred percent of teachers agreed or strongly agreed that their students have enjoyed using My Math Academy, that they find it to be a valuable math learning resource, that it adapts to their students' needs, and that they want to continue using My Math Academy in their teaching.

Vl Age of Learning

Conclusion

This was the first study to evaluate the impact of Age of Learning's My Math Academy app on students' math learning in kindergarten classrooms. Using rigorous methods, students who used My Math Academy were found to have significantly greater growth in their math knowledge than their control group peers. Notably, these accelerated gains were found with relatively little time spent on the intervention: an average of 5.2 hours of usage in total or about 30 minutes per week over the course of 12-14 weeks.

The impacts of My Math Academy are greatest for those students who have some prior basic number sense (i.e., in the zone of proximal development) and/or who were more engaged in using the app. Importantly, My Math Academy had the greatest impacts on the most difficult, and most likely to be overlooked by teachers, math skills for young learners. Lastly, teachers recognized the value of My Math Academy as a resource to personalize learning and one that they want to continue using.

[^0]: Manager, Learning Science and Research, Age of Learning, Inc.
 Senior Research Associate, Science, Technology, Engineering, \& Mathematics (STEM) Program, WestEd.

 + Senior Manager, Efficacy Research, Age of Learning, Inc.
 ${ }^{++++}$This research was funded by Age of Learning, Inc.

[^1]: 2 Transitional kindergarten (TK) is the first year of a two-year program in the California K-12 public school system for four-year-olds who will turn five after the start of the school year.
 ${ }^{3}$ The following analyses excluded (1) 24 students who moved away or to another school and did not receive the posttest, (2) 7 students who were enrolled in participating schools during the implementation period and did not receive the pretest, and (3) one student who was transferred from a control classroom to a treatment classroom. There were two students who moved from one treatment classroom to another, each within the same school, and they were kept in the analyses under the original teacher assignment. There was no cluster-level attrition.

[^2]: 4 Ginsburg, H. \& Baroody, A. (2003). TEMA-3 Examiners Manual (3rd ed.). Austin, TX: PRO-ED.
 5 McGraw-Hill Education (Firm). (2014). My Math. Columbus, OH: McGraw-Hill Education.
 Starfall Education Foundation (Firm). 2017. Starfall. Boulder, CO: Starfall Education Foundation.
 MIND Research Institute (Firm). (2017). Spatial-Temporal Math (ST Math). Irvine, CA: MIND Research Institute.
 The HLM model included students' pretest scores on mathematics knowledge and skills (PRE) as a covariate in the Level 1 model. The Level 2 model included the intervention variable (TREAT), and the Level 3 model contained the school-level effects. The models were specified as the following:
 Level 1: yijk $=\pi 0 j k+m i j k P R E_{i j k}+$ eijk
 Level 2: $\pi 0 j k=\beta 00 k+\beta 01 k T R E A T j k+r 0 j k$
 Level 3: $\beta 00 \kappa=y 000+\mu 00 k$
 $\beta 01 k=\gamma 010+\mu 01 k$
 $\mu 00 \mathrm{k}$ are fixed effects associated with each school mean, constrained to have a mean of 0 , and $\mu 01 \mathrm{k}$ are fixed effects associated with each treatment-byschool interaction, constrained to have a mean of 0 .

[^3]: a Treatment $n=233$, control $n=195$.
 b Pretest difference is in adjustable range.
 c Effect size was calculated by dividing the adjusted mean difference by the full sample unadjusted standard deviation of the pretest.
 d Effect size was calculated by dividing impact estimate by the full sample unadjusted standard deviation of the outcome variable.

[^4]: 9 Kraft, M.A. (2018). Interpreting Effect Sizes of Education Interventions. Brown University Working Paper.
 10 The baseline difference between treatment and control groups (effect size $=0.14$) is between 0.05 and 0.25 standard deviations, which is in statistical adjustment range to meet federal What Works Clearinghouse baseline equivalence requirements.

[^5]: ${ }_{11}$ Engel, M., Claessens, A., \& Finch, M. A. (2013). Teaching students what they already know? The (mis)alignment between mathematics instructional content and student knowledge in kindergarten. Educational Evaluation and Policy Analysis, 35(2) 157-178.

